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Abstract

Simulations of dense one-component melts of coarse-grained polyethylene (PE) and polyoxyethylene (POE) chains have been modified so that

some of the parent chains are collapsed intramolecularly to become filler particles. All intermolecular pairs of beads (filler–filler, filler–matrix,

matrix–matrix) interact via exactly the same Lennard–Jones (LJ) potential. Filler particles are obtained by an increase in the strength of the

minimum in their intramolecular LJ potential. The response of the mean square radius of gyration, hs2imatrix, of the free matrix chains to disordered

arrangements of the filler particles is evaluated for differences in the compactness and mobility of the filler particles, and for various relationships

between the mass of matrix chains and filler particles. Even with this simple model, where distinctive surface—matrix interactions are completely

suppressed, the response of hs2imatrix to the filler particles is complex. It depends on the completeness of the collapse of the chains that represent the

filler particles, the mobility of these particles, their concentration, and the relationship between the number of beads in the matrix chains and filler

particles. Expansion of the matrix chains is seen when the particles and matrix are both represented by a small number of beads, but contraction of

matrix chains can be observed when both species contain a large number of beads. The mobility of the filler particles is likely to be an important

issue when they are small, i.e. nanoparticles, and the matrix is not glassy.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Decades ago it was demonstrated that the physical proper-

ties of amorphous polymers are often changed in beneficial

ways by the addition of small filler particles [1,2]. Here, as in

many areas of science, the nanoscale is particularly interesting.

Nanoscale fillers can produce more interesting properties than

micron sized fillers [3–6]. Part of this effect may be produced

by the energetic interaction between the matrix chains and the

filler particles. The energetic interaction might be attractive or

repulsive, depending on the selection of the two components.

This system-specific physical response is superimposed on a

generic response, which may depend on the mean square radius

of gyration (hs2ifiller), shape, porosity, and volume fraction

(xfiller) of the filler particles, but suppresses any chemistry-

specific special energetic interaction between the two

components. The simulations reported here are designed to
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detect the generic response of the mean square radius of

gyration of a matrix chain (hs2imatrix) to the introduction of

nano-sized filler particles. The manner in which the particles

are treated in the simulation guarantees the complete

suppression of any influence of special particle—matrix

energetic effects.

Design of a simulation with this goal demands a precise

definition of the chemical composition of a filler particle that

will elicit only the generic response in the matrix chains,

uncomplicated by any system-specific energetic effects. Our

definition starts from an unfilled, one-component polymer

melt, where all of the chains have the same composition and

mean square unperturbed radius of gyration, denoted by hs2i0.

The intermolecular interactions in a one-component melt are

the same for all pairs of chains. We define the ‘generic’ particle

as one, which shares precisely these intermolecular inter-

actions, so that a bead in matrix chain i does not discriminate

between beads in matrix chain j and beads in filler particle k,

insofar as the pair-wise energetic intermolecular interaction is

concerned. With this definition, any difference between

hs2imatrix and hs2i0 must arise entirely from the size, shape,

porosity, and concentration of the filler particle, uncomplicated
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Fig. 1. Depiction of the distinction between u3,interZu3 and u3,intra.
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by any special energetic effects. This definition leads naturally

to a precise statement of the desired chemical composition for

our ‘generic’ filler particles. The generic filler particles are

collapsed representations of chains constructed from exactly

the same repeat unit as the one found in the chains that appear

in the matrix. A specific example is provided by polystyrene

particles in a melt of linear polystyrene chains [7,8].

If a few chains are collapsed to spheres with the density, r,

expected for that type of chain, they represent generic dense

spherical filler particles that are impermeable to the matrix.

Alternatively, they might be collapsed less severely, in which

case they can represent generic nonspherical filler particles that

are permeable to the matrix chains. Recently, we described the

formation and properties of both impermeable and permeable

filler particles obtained by the intramolecular collapse of a few

coarse-grained polyethylene (PE) and polyoxyethylene (POE)

chains in the melts [9]. Here, we identify several properties of

the system that determine the response of hs2imatrix to these

generic filler particles.

The behavior of hs2imatrix in systems with filler particles of

different compositions has been the topic of several neutron

scattering experiments [10–13] and simulations [14–26]. The

experiments demonstrate an intriguing dependence of the

qualitative response of hs2imatrix to the details of the system.

Thus, for polydimethylsiloxane (PDMS) filled with polysili-

cate particles, hs2imatrix!hs2i0 if the system is constructed so

that hs2imatrix and hs2ifiller are similar in size [12,13]. However,

hs2imatrixOhs2i0 if longer PDMS chains are used, at least at low

xfiller [12,13]. The extent of the expansion is reduced at higher

xfiller. Simulations also show a rich variety of responses of the

matrix to the filler. There is precedent for either hs2imatrixOhs2i0
[17,18,24] or hs2imatrix!hs2i0 [6,18,20–22,24], with the quali-

tative result sometimes dependent on the relationship between

hs2imatrix and hs2ifiller [18,24]. There is also a report that the

distribution function for the end-to-end distance of the matrix

chains experiences only an insignificant change in response to

the filler particles [25]. The value of hs2imatrix need not respond

in a monotonic fashion to the amount of filler, but may instead

pass through a maximum as xfiller increases [24]. With the

exception of the recent study of flow properties for polystyrene

particles in polystyrene melts [7,8], prior experiments or

simulations did not study systems that contain ‘generic’ filler

particles, as that term was defined in the previous paragraph.

The identification of properties of the system that affect the

‘generic’ behavior should serve as a useful reference point for

understanding the physical basis of the varied response of more

complicated systems. This report presents the first simulation

of the ‘generic’ response of hs2imatrix to the presence of nano-

sized generic filler particles.

2. Simulation method

The Monte Carlo (MC) simulations employ coarse-grained

polyethylene (PE) or polyoxyethylene (POE) chains on a

sparsely occupied high coordination lattice [27,28]. The chains

are constrained so that any snapshot can be reverse-mapped to

an atomistically detailed model at bulk density in continuous
space [29]. Two consecutive chain atoms and their pendant

hydrogen atoms are folded into each coarse-grained bead. The

step length is 0.250 nm for PE [30] and 0.239 nm for POE [30].

Occupancies of 18% [32] and 20% [31], respectively,

reproduce the experimental density (r) for PE melts and POE

melts at the temperatures (T) used in the simulations (453 K for

PE, 373 K for POE). All of the NVT simulations were

performed at the experimental r of the one-component melts at

these T. The simulations invoke the assumption that r is

independent of xfiller when the filler is generic.

Two types of constraints cause the coarse-grained chains in

a one-component melt to mimic the real chains they represent.

The proper distribution function for the end-to-end distance of

each chain, and all of its subchains, is enforced by a mapping

[33] of the rotational isomeric state (RIS) models for PE [34]

and POE [35]. The proper intermolecular structure of the one-

component melt is imposed by use of a discretized Lennard–

Jones (LJ) potential for the intermolecular interactions, as well

as all intramolecular interactions not treated explicitly in the

RIS model [32].
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The discretization, using input values of sZ0.44 nm and

3/kBZ185 K for PE, and sZ0.376 nm and 3/kBZ154 K for

POE, produces interaction energies, ui, for the various shells on

the lattice [31]. These input LJ potentials specify u1Z14.426,

u2Z0.558, and u3ZK0.626 kJ/mol for PE, and u1Z8.113,

u2ZK0.213, and u3ZK0.339 kJ/mol for POE, at the T

employed in the simulations. The less significant ui for iO3

were ignored in the present simulations.

The collapse of selected chains to become filler particles

was handled in the manner introduced recently by Lin et al. [9].

The maximum attraction of the discretized LJ potential, which

appears in the third shell, is separated into two terms, denoted

u3,inter and u3,intra in Fig. 1. Within a given collapsed chain,

long-range intramolecular interactions not treated explicitly

with the RIS model use u3,intra, which is obtained from u3,inter in

the manner shown in Eq. (2).

u3;intra Z lu3;inter (2)
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All of the intermolecular interactions continue to use the

unaltered u3,interZu3. The assignment lO1 enhances the short-

range attraction between two beads in the collapsed chain. If l

is large enough, hs2ifiller approaches (3/5)(3M/4prNA)
2/3, which

is the value expected for a uniform sphere with the specified

mass (M/NA) and density. The extent of the collapse at a

specified value of l is characterized using the term defined in

Eq. (3).

ch
hs2i3=20 Khs2i3=2filler

hs2i3=20 Kð3=5Þ3=2ð3M=4prNAÞ
(3)

In the one-component melt, before any collapse has

occurred, cZ0 because hs2i0 and hs2ifiller are indistinguishable.

Complete collapse to a spherical, impenetrable particle of the

desired density yields cZ1. A consequence of the definition in

Eq. (3) is that a spherical particle with cZ1 has precisely the

same density as the matrix. Collapse of a matrix chain to such a

particle in the melt does not affect the space available to the

uncollapsed matrix chains. It rearranges the available space,

but does not change the total amount.

The reduction in dimensions must be accompanied by a

change in the anisotropy of the instantaneous conformations.

For long unperturbed chains, the average principal moments of

the radius of gyration tensor are in the ratio hL2
2i=hL

2
1iZ0:23 and

hL2
3i=hL

2
1iZ0:08 [36]. Complete collapse to a dense sphere not

only decreases the value of hs2ifiller; it also causes the

asymmetry to approach hL2
2i=hL

2
1iZ hL2

3i=hL
2
1iZ1, as sketched

in Fig. 2. In the simulation, the value of l is not allowed to

become so large that it produces unphysical values of c that are

significantly larger than 1. However, values of c between 0 and

1 are of interest, because this range includes incompletely

collapsed, permeable particles with asymmetries intermediate

between those of the unperturbed chain and a sphere [9].

The filler content, xfiller, is the fraction of the beads that are

in collapsed chains.

Single bead moves [29] and pivot moves for 2–6 beads [37],

along with the Metropolis rules [38], were employed for

equilibration of the systems. Equilibration is judged by the

absence of any systematic trend for hs2ifiller and hs2imatrix, mean

square displacement of the centers of mass over a distance that
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Fig. 2. Sketch of the change in mean square dimensions and asymmetry when c

changes from 0 to 1.
exceeds hs2ifiller and hs2imatrix and decay of the orientation

autocorrelation function for the end-to-end vectors, hr$ri, to
values close to 0. On average, each bead is tried once for a

single bead move, and once for a pivot move, during a single

MC step (MCS).

The collapsed particles studied in the simulation are

somewhat similar to the highly crosslinked polystyrene

particles in a polystyrene matrix [7,8]. However, there is one

important difference. The collapse of the polystyrene particles

is enforced by covalent crosslinks, which occupy permanent

positions in the particles. The collapse of the particles in the

simulations is enforced by noncovalent interactions, which are

transitory in nature. Therefore, the particles in the simulations

[10] have access to internal degrees of freedom that are not

accessible to the crosslinked polystyrene particles studied in

the experiments [7,8].

3. Results and discussion

3.1. Response of the matrix chains to the completeness

of the collapse of the filler particles

The single point at cZ0 in Fig. 3 depicts hs2i0 for the chains

in a dense POE melt. Each of the 43 parent chains is

represented by 52 coarse-grained beads, and lZ1 is used for

all of these chains. At values of c larger than 0, a single parent

chain (xfillerZ0.023) is subjected to a value of l that is larger

than 1, producing a smaller value for its hs2i that is now denoted

hs2ifiller. The value of hs2ifiller for this ‘filler particle’ after

equilibration with the new value of l determines the value of c

via Eq. (3). The remaining parent chains, which continue to use

lZ1, experience an increase in their mean square dimensions

to a new value denoted by hs2imatrix. There is no physically

sensible value of c, 0!c!1, where hs2imatrix!hs2i0. The data

suggest a lengthy plateau for hs2imatrix at intermediate c, and an

increase in hs2imatrix as c/1. The largest hs2imatrix is seen when

the particles are completely collapsed, with c near 1.

The suggestion of a lengthy plateau for hs2imatrix at

intermediate values of c in Fig. 3 raises the interesting

possibility that, for suitable perturbation in the construction of
1
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Fig. 3. Change in hs2imatrix when the filler particle, at xfillerZ0.20, is collapsed to

varying degree in the physically sensible range. Filler particle and matrix

chains are each represented by 52 coarse-grained beads of POE.
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the system, hs2imatrix might pass through local maxima and

minima as c increases. That possibility is realized in Fig. 4 for

two systems constructed from coarse-grained PE. In this figure,

the filler particles are smaller than the matrix chains, with the

numbers of coarse-grained beads being 14 and 58, respectively.

Furthermore, the concentration of the filler particles, either

xfillerZ0.32 or 0.6, is as much as an order of magnitude larger

in Fig. 4 than it was in Fig. 3. These larger value of xfiller
required representation of the filler particles with multiple

parent chains. These parent chains are mobile, producing

various random arrangements during the simulation. The

differences in the depths of the local minima in the two data

sets depicted in Fig. 4 become significant when they are

compared with the dimensions of the unperturbed chains, at

cZ0. When xfillerZ0.6, hs2imatrix is always larger than hs2i0, but

when xfiller is 0.32, there is a small range of c at which hs2imatrix

is smaller than hs2i0.

3.2. Mobile vs. immobile filler particles

In the MC simulation of the one-component melt, the same

attempt frequency is used for moving all of the beads in all of

the chains. This condition is not changed when some of the

chains are subjected to lO1. Obviously, individual chains

could not collapse if one no longer attempted to move their

beads after changing the numerical value of l. The same

attempt rate is maintained throughout the simulation, even after

completion of the collapse, which causes the particles to be

mobile [9]. This condition seems physically sensible,

especially for cases where the particles are smaller than the

matrix chains. Most of the prior simulations of filled systems

have used stationary arrays of filler particles. Therefore, it

becomes important to inquire whether hs2imatrix is affected by

the mobility of the nanoparticles.

The mobility of the nanoscopic filler particles can be

important, as shown in Fig. 5. The system uses a high

concentration (xfillerZ0.6) of partially collapsed (cZ0.53)

nanoscopic filler particles of 14 PE beads, randomly dispersed

in a matrix of PE chains represented by 58 beads. This
composition is near the local maximum in hs2im in Fig. 4. The

numbering of the Monte Carlo steps (MCS) in Fig. 5 begins

after the system has reached a steady state.

The hs2ifiller for the filler particles fluctuate within a narrow

range near 0.35 nm2. These fluctuations are barely visible on

the scale used in Fig. 5. At 5 million MCS, the attempt to move

beads in the filler particles is suspended, and remains

suspended until 15 million MCS. The trace for hs2ifiller is a

precise flat line during this time interval in Fig. 5. From 15 to

20 million MCS, the suspension is lifted, and the attempt rate

for beads in filler particles is twice as large as it was initially.

The small fluctuations in hs2ifiller are reestablished. They are

about the same size as they were at 0–5 million MCS, and

hs2ifiller is not affected, with c remaining close to 0.53. Then the

attempt rate for filler particles is again suspended from 20 to 25

million MCS. The suspension is again lifted at 25 million

MCS, but now the attempt rate for the beads in the particles is

only 10% as large as it was initially.

The matrix chains show a reproducible relaxation in

hs2imatrix in response to the changes in the mobility of the filler

particles. During the first 5 million MCS, hs2imatrix is about

2.5 nm2, which implies a slight expansion of the matrix chains

in response to the filler. But when the filler particles are frozen,

hs2i for the matrix chains relaxes to a smaller value of about

1.8–1.9 nm2, which implies a small contraction of the matrix

chains in response to the filler. In this system, the qualitative

response of the matrix chains (expansion or contraction)

depends on whether or not the particles retain the same

potential mobility that they had in the one-component melt,

before collapse.

The physical origin of this effect is demonstrated in Fig. 6.

The curve with negative slope is the orientation autocorrelation

function for the end-to-end vector in the matrix chains. This

correlation function implies a relaxation time, t, on the order of
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106 MCS. The line with a positive slope is the mean square

displacement of the center of mass of the nanoparticles,

evaluated under the condition where the attempt rate for a

move of a nanoparticle is only 10% as large as the attempt rate

for moving a bead in a matrix chain. In the time specified by t,

the mean square displacement of a nanoparticle is over an order

of magnitude larger than hs2ifiller. Under these conditions, the

comparatively slow relaxation of the matrix chains does not

allow them to adjust completely to the positions of the mobile

nanoparticles. The disturbance of the matrix by the mobile

particles produces hs2imatrixOhs2i0. In contrast, if the matrix can

adjust completely to the coordinates of the nanoparticles,

which happens if the mobility of the nanoparticles is

suppressed, the inequality changes to hs2imatrix!hs2i0. Only

when the longest relaxation time for the matrix chains is much

shorter than the diffusion time for the particles it will be

appropriate to model the particles as being in a static array.

Very small particles may not fit this limiting condition. Perhaps

a part of the special effects attributed to filled system

containing very small nanoparticles might arise from the fact

that their mobility affects the steady state dimensions of the

matrix chains. That effect is an expansion in the dimensions of

the matrix chains, as seen in Fig. 5.

All of the remaining simulations reported here use mobile

particles, in which all beads are subject to exactly the same

attempt rate that was employed in the one-component melt,

with lZ1 and cZ0.
0
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Fig. 8. Depiction of the effects of the degrees of polymerization (DP) of the

matrix chains and filler particles on the relationship between hs2imatrix and hs2i0
for PEO. The points are plotted with shaded circles if hs2imatrixOhs2i0 and with

open circles if hs2imatrix!hs2i0. The value of DC associated with each point is

hs2imatrix/hs
2i0K1. Larger symbols denote points for which the values of DC lie

farther from 0. The values of xfiller are in the range 0.22G0.05, and the values of

c are in the range 0.88G0.12.
3.3. Expansion and contraction of the matrix chains

Fig. 7 shows the response of hs2imatrix for the matrix chains

represented by 58 beads of coarse-grained PE when the filler

particles, also PE, are completely collapsed, with c in the range

0.98–1.03. As filler content increases, hs2imatrix increases when

the filler particles are very small (14 beads, or about 1/4 as

large as the number of beads in a matrix chain). However, a

decrease in hs2imatrix is seen if the filler particles contain
the same number (58) of beads, or three times as many beads

(174), as a matrix chain.

Fig. 8 presents a pictorial summary of the manner in which

the qualitative change in hs2imatrix produced by filler particles is

affected by the relationship between the masses of the two

species. All of the data is from strongly collapsed filler

particles, with c lying in the range 0.77–1.00. The main

diagonal in the figure (from lower left to upper right) addresses

cases where the matrix chains and filler particles have the same

degree of polymerization. If this degree of polymerization is

small, hs2imatrixOhs2i0, but the inequality switches to hs
2imatrix!

hs2i0 as the degree of polymerization increases. The trend

produced by the introduction of inequalities in the degrees of

polymerization of the two species is revealed by inspection of

the diagonal running from upper left to lower right. Causing the

matrix to have a degree of polymerization larger than the
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degree of polymerization of the filler particles favors hs2imatrix-

Ohs2i0, consistent with the behavior of PDMS chain with

polysilicate particles [12,13]. Placement of large filler particles

in small matrix chains favors hs2imatrix!hs2i0.
4. Conclusions

The response of the dimensions of matrix chains to filler

particles depends on a nonmonotonic fashion of the degree of

collapse of the particles. It also depends on the mobility of the

particles, where rapid diffusion of the filler particles tends to

increase the dimensions of the matrix chains. The response of

the matrix chains to the filler particles depends on the

relationship between their masses. When these masses are

identical, and the filler concentration is in the range xfillerZ
0.22G0.05, matrix chains are expanded if the masses are small,

but increase in the masses leads to systems in which the matrix

chains contract. Inequalities in the masses lead to expansion of

the matrix chains for large chains and small particles, and

contraction of matrix chains for short chains and large

particles. For nanoparticles immersed in long matrix chains,

the simulations find expansion of the matrix chains, and this

expansion of the matrix chains is enhanced if the nanoparticles

are mobile.

All of the results obtained here have been obtained with

filler particles and matrix chains that are small enough so that

the particular character of the materials is important. This fact

is incorporated in the simulations, because, as demonstrated

elsewhere [29], the applied method permits accurate recovery

of atomistically detailed models in continuous space. Our

nanoparticles do not assume idealized shapes such as perfect

spheres with a smooth surface. Even when cZ1, the particles

retain a rough surface and have a detectable asphericity in their

shapes. Except when specifically stated to the contrary, our

particles are able to diffuse in a natural manner, to the extent

expected for their size and the viscosity of the matrix. This

diffusive motion of the particles affects the dimensions of the

matrix chains. Most other coarse-grained simulations neglect

the influence of the mobility of the filler particles on the

dimensions of the matrix chains. For all of these reasons, our

results may be somewhat different from those anticipated by

simulations with much more idealized systems. We believe

that our approach is closer to reality than results obtained with

more highly idealized systems, especially when one is

concerned with nano-composites in which the filler particles

are very small.
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